Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.340
Filtrar
1.
Data Brief ; 54: 110305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38559817

RESUMO

Existing databases containing measurements of crack width and spacing are usually limited in size and based on isolated experimental studies. These databases are used to develop new formulas to describe crack patterns in concrete structures. A database obtained from multiple sources of experimental programmes is required to quantify the accuracy of those formulas. To this end, a database containing crack width and crack spacing measurements was created, based on 30 different experimental programs described in literature. The results of each program were described in .xlsx format and queried to a database (.csv) using Structured Query Language (SQL). The structural elements considered in the database are reinforced and prestressed ties, beams, and reinforced slabs with varying geometry, concrete and reinforcement properties. From the considered experimental programs, over twenty thousand data points were extracted using a systematic approach. The data points consist of the metadata, materials, structural element preparations, test setups and measured crack widths and spacings. The database's applied structure is robust and valuable: it can be implemented in subsequent research focussing on cracking in concrete, such as assessing existing formulas to describe the crack widths and spacings in concrete structures, or deriving new formulas, potentially improving the prediction of the remaining service life of concrete structures.

2.
Materials (Basel) ; 17(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38591389

RESUMO

Specimens made of various materials with different geometric features were investigated to predict the failure loads using the recently proposed criterion comprised of both stress and stress gradient conditions. The notch types were cracks and holes, and the materials were brittle, ductile, isotropic, orthotropic, or fibrous composites. The predicted failure stresses or loads were compared to experimental results, and both experimental and theoretically predicted results agreed well for all the different cases. This suggests that the stress and stress-gradient-based failure criterion is both versatile and accurate in predicting the failure of various materials and geometric features.

3.
J Subst Use Addict Treat ; 162: 209374, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641054

RESUMO

INTRODUCTION: The Therapeutic Community Model narrows the gap in substance use disorder's network of assistance in Brazil by offering residential treatment to socially vulnerable populations. Due to a historical lack of evidence-based approaches, the government has established treatment guidelines and has been trying to implement training and monitoring methods. METHOD: This study analysed real-world data from the monitoring system implemented in the largest network of institutions receiving public funds in the State of Sao Paulo. Data came from 8109 records of individuals admitted between 2014 and 2016 in 48 institutions. RESULTS: Results showed that less than half of the sample was exposed to at least one therapeutic activity from each of the recreational, spiritual, educational and selfcare intervention domains, as proposed by the national guidelines. Social rehabilitation outcome (SRO) defined by housing and self-support at discharge was reported by 21 % of the sample, who stayed in residential treatment for 82.6 days in average. More than half completed the therapeutic programme while 27.3 % dropout. Treatment duration and the diversity of the interventions offered were significantly associated with SRO when mutually adjusted. Chances of SRO increased nearly 5 times when residents were offered the full range of intervention domains, even when controlling for treatment duration. Treatment duration increased chances of SRO in a dose-response manner with a threefold increase for stays up to 90 days and over 9 times for stays longer than 90 days. CONCLUSION: Our findings offer evidence to promote treatment guidelines compliance and to pave the way for the implementation of monitoring systems for this modality of treatment in Brazil and abroad.

4.
ACS Nano ; 18(15): 10566-10581, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38556986

RESUMO

Ni-rich layered oxides have received significant attention as promising cathode materials for Li-ion batteries due to their high reversible capacity. However, intergranular and intragranular cracks form at high state-of-charge (SOC) levels exceeding 4.2 V (vs. Li/Li+), representing a prominent failure mechanism of Ni-rich layered oxides. The nanoscale crack formation at high SOC levels is attributed to a significant volume change resulting from a phase transition between the H2 and H3 phases. Herein, in contrast to the electrochemical crack formation at high SOC levels, another mechanism of chemical crack and pit formation on a nanoscale is directly evidenced in fully lithiated Ni-rich layered oxides (low SOC levels). This mechanism is associated with intergranular stress corrosion cracking, driven by chemical corrosion at elevated temperatures. The nanoscopic chemical corrosion behavior of Ni-rich layered oxides during aging at elevated temperatures is investigated using high-resolution transmission electron microscopy, revealing that microcracks can develop through two distinct mechanisms: electrochemical cycling and chemical corrosion. Notably, chemical corrosion cracks can occur even in a fully discharged state (low SOC levels), whereas electrochemical cracks are observed only at high SOC levels. This finding provides a comprehensive understanding of the complex failure mechanisms of Ni-rich layered oxides and provides an opportunity to improve their electrochemical performance.

5.
Sci Rep ; 14(1): 7642, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561478

RESUMO

Crack formation is a common phenomenon in engineering structures, which can cause serious damage to the safety and health of these structures. An important method of ensuring the safety and health of engineered structures is the prompt detection of cracks. Image threshold segmentation based on machine vision is a crucial technology for crack detection. Threshold segmentation can separate the crack area from the background, providing convenience for more accurate measurement and evaluation of the crack condition and location. The segmentation of cracks in complex scenes is a challenging task, and this goal can be achieved by means of multilevel thresholding. The arithmetic-geometric divergence combines the advantages of the arithmetic mean and the geometric mean in probability measures, enabling a more precise capture of the local features of an image in image processing. In this paper, a multilevel thresholding method for crack image segmentation based on the minimum arithmetic-geometric divergence is proposed. To address the issue of time complexity in multilevel thresholding, an enhanced particle swarm optimization algorithm with local stochastic perturbation is proposed. In crack detection, the thresholding criterion function based on the minimum arithmetic-geometric divergence can adaptively determine the thresholds according to the distribution characteristics of pixel values in the image. The proposed enhanced particle swarm optimization algorithm can increase the diversity of candidate solutions and enhance the global convergence performance of the algorithm. The proposed method for crack image segmentation is compared with seven state-of-the-art multilevel thresholding methods based on several metrics, including RMSE, PSNR, SSIM, FSIM, and computation time. The experimental results show that the proposed method outperforms several competing methods in terms of these metrics.

6.
Knee ; 48: 120-127, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579436

RESUMO

BACKGROUND: Rupture of the knee menisci is a common injury that can have implications for other conditions, such as osteoarthritis. The fracture toughness of soft tissue (Jc) is a mechanical property that characterizes its resistance to tear extension. To date, Jc of the meniscus has not been quantified. METHODS: Cyclic tensile tests were conducted on meniscus samples to determine Jc and explore its characteristics. Initially, the study investigated the impact of an initial notch on the ultimate tensile stress. This allowed for an understanding of how the presence of a notch affects its structural integrity. Subsequently, Jc was measured in both the radial and circumferential directions to assess its loading direction dependency. Furthermore, the study assessed the effect of anatomical location by comparing samples collected from the femoral and tibial layers. RESULTS: Defect tolerance of the meniscus is influenced by the loading direction. In the circumferential direction, the presence of an initial notch did not affect the ultimate stress, and no crack expansion was observed. In radial samples with a notch length of 40% or more of the total width, crack propagation occurred, leading to a decrease in the ultimate stress (p< 0.01). Additionally, Jc was found to be higher in the femoral layer compared to the tibial layer (p= 0.017). CONCLUSION: The study also examined the failure patterns of the meniscus to enhance our understanding of its pathology. These insights contribute to a better comprehension of meniscus injuries and can aid in the development of more effective treatment strategies.

7.
Ultrasonics ; 140: 107306, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38579487

RESUMO

To characterize fatigue crack, an analytical calculation and finite element (FE) simulation of Lamb wave propagating through the region of a breathing crack in a two-dimensional(2D) isotropic plate were studied. Contact surface boundary conditions between the two surfaces of the vertical crack were considered to study contact acoustic nonlinearity (CAN) from the breathing contact crack in conjunction with the modal decomposition method, Fourier transform, and variational principle-based algorithm. Reflection and transmission coefficients in the fundamental frequency and second harmonic frequency were calculated and analyzed quantitatively. Different ratios of incident wave amplitude to crack width were studied to calculate CAN results related to micro-crack width. In addition, a low-frequency (LF) vibration(10 Hz) excitation was introduced to perturb the free surface vertical crack to close, and an interrogating Lamb wave(1 MHz) was used to study crack-related CAN in different conditions for interpreting the modulation mechanism. The contact boundary conditions between two surfaces of vertical crack were set which were dynamically changed due to the low frequency modulation. The clapping effects when the crack closed due to the modulation of the contact boundary conditions between the crack surfaces were studied and analyzed to get the quantitative correlation between CAN and LF modulation. The results obtained from the analytical model were compared with those from the FE simulation, showing good consistency. Knowledge of these effects is essential to correctly gauge the severity of surface cracks in the plate, which can be spotlighted in its application to quantitative evaluation of micro fatigue cracks in structural health monitoring(SHM).

8.
Res Sq ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559156

RESUMO

Background: In recent years, overdoses involving illicit cocaine, methamphetamine, and other stimulants have increased in the U.S. The unintentional consumption of stimulants containing illicit fentanyl is a major risk factor for overdoses, particularly in Massachusetts and Rhode Island. Understanding the drug use patterns and strategies used by people who use stimulants (PWUS) to prevent overdose is necessary to identify risk and protective factors for stimulant-involved overdoses. Mixed-methods research with people who distribute drugs (PWDD) can also provide critical information into the mechanisms through which fentanyl may enter the stimulant supply, and the testing of drug samples can further triangulate PWUS and PWDD perspectives regarding the potency and adulteration of the drug supply. These epidemiological methods can inform collaborative intervention development efforts with community leaders to identify feasible, acceptable, and scalable strategies to prevent fatal and non-fatal overdoses in high-risk communities. Methods: Our overall objective is to reduce stimulant and opioid-involved overdoses in regions disproportionately affected by the overdose epidemic. To meet this long-term objective, we employ a multi-pronged approach to identify risk and protective factors for unintentional stimulant and opioid-involved overdoses among PWUS, and use these findings to develop a package of locally tailored intervention strategies that can be swiftly implemented to prevent overdoses. Specifically, this study aims to [1] Carry out mixed-methods research with incarcerated and non-incarcerated people who use or distribute illicit stimulants to identify risk and protective factors for stimulant and opioid-involved overdoses; [2] Conduct drug checking to examine the presence and relative quantity of fentanyl and other adulterants in the stimulant supply; and [3] Convene a series of working groups with community stakeholders involved in primary and secondary overdose prevention in Massachusetts and Rhode Island to contextualize our mixed-methods findings and identify multilevel intervention strategies to prevent stimulant-involved overdoses. Discussion: Completion of this study will yield a rich understanding of the social epidemiology of stimulant and opioid-involved overdoses in addition to community-derived intervention strategies that can be readily implemented and scaled to prevent such overdoses in two states disproportionately impacted by the opioid and overdose crises: Massachusetts and Rhode Island.

9.
Sci Rep ; 14(1): 8063, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580834

RESUMO

The mechanical properties of a coal-rock body were examined through uniaxial compression tests, and the rupture process of the coal-rock body was monitored in real time using a combined acoustic emission (AE) monitoring system and a digital image correlation (DIC) full-field strain measurement system. From a comparison of the mechanical properties of coal and sandstone, clear differences are apparent regarding the uniaxial compressive strength, deformation characteristics, and damage mode; the brittle failure characteristics of the coal samples are also more evident. The change in AE energy reflects the accumulation and release of elastic energy during the rupture process, and the evolution of AE localization points under different stress levels can effectively reflect rupture propagation. Further, the DIC full-field strain measurement method can quantitatively monitor the evolution of the displacement and strain fields at the marking point and surface simultaneously, thereby overcoming the limitations of traditional empirical and qualitative rupture processes. During monitoring, the AE focuses on the internal rupture of the specimen and the DIC focuses on the surface deformation. These complement each other and reflect the rupture process more comprehensively.

10.
Sensors (Basel) ; 24(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38610545

RESUMO

The degradation of road pavements due to environmental factors is a pressing issue in infrastructure maintenance, necessitating precise identification of pavement distresses. The pavement condition index (PCI) serves as a critical metric for evaluating pavement conditions, essential for effective budget allocation and performance tracking. Traditional manual PCI assessment methods are limited by labor intensity, subjectivity, and susceptibility to human error. Addressing these challenges, this paper presents a novel, end-to-end automated method for PCI calculation, integrating deep learning and image processing technologies. The first stage employs a deep learning algorithm for accurate detection of pavement cracks, followed by the application of a segmentation-based skeleton algorithm in image processing to estimate crack width precisely. This integrated approach enhances the assessment process, providing a more comprehensive evaluation of pavement integrity. The validation results demonstrate a 95% accuracy in crack detection and 90% accuracy in crack width estimation. Leveraging these results, the automated PCI rating is achieved, aligned with standards, showcasing significant improvements in the efficiency and reliability of PCI evaluations. This method offers advancements in pavement maintenance strategies and potential applications in broader road infrastructure management.

11.
Polymers (Basel) ; 16(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611143

RESUMO

In this study, particle loading, polyfluorinated alkyl silanes (PFAS or FAS) content, superhydrophobicity, and crack formation for nanocomposite coatings created by the spray coating process were investigated. The formulations comprised hydrophobic silica, epoxy resin, and fluorine-free or FAS constituents. The effect of FAS content and FAS-free compositions on the silica and epoxy coatings' chemistry, topography, and wetting properties was also studied. All higher particle loadings (~30 wt.%) showed superhydrophobicity, while lower particle loading formulations did not show superhydrophobic behavior until 13% wt. FAS content. The improved water repellency of coatings with increased FAS (low particle loadings) was attributed to a combination of chemistry and topography as described by the Cassie state. X-ray photoelectron spectroscopy (XPS) spectra showed fluorine enrichment on the coating surface, which increases the intrinsic contact angle. However, increasing the wt.% of FAS in the final coating resulted in severe crack formation for higher particle loadings (~30 wt.%). The results show that fluorine-free and crack-free coatings exhibiting superhydrophobicity can be created.

12.
Polymers (Basel) ; 16(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611222

RESUMO

The usage of adhesively bonded joints, such as single-lap and double-lap joints, is increasing rapidly in aerospace composite structures as a popular alternative to bolts and rivets. Compared to the conventional joining methods such as fastening and riveting, adhesive-bonding technology better prevents damage to composite structures due to the smooth configuration and the mitigation of stress concentration around holes. In this work, the built-in progressive-damage-modeling techniques in Abaqus, including the cohesive zone model (CZM) and the virtual crack closure technique (VCCT), are used to predict the strength and progressive failure of composite single-lap joints subjected to tensile loading. Modeling of an adhesive layer by using a zero/non-zero-thickness cohesive element, cohesive surface, and VCCT is investigated, as is the effect of brittle and ductile adhesives. Two-dimensional finite-element models with different damage-modeling strategies are performed in this study. The failure-load predictions are compared with the experimental results obtained from the literature. For the ductile adhesive, the predicted failure loads using a zero/non-zero-thickness cohesive elements and a cohesive surface are all shown to be in good agreement with the experiments. However, the VCCT technique predicts higher failure loads. For a brittle adhesive, on the other hand, the predictions by zero/non-zero-thickness cohesive elements and cohesive surfaces reveal notable deviations compared to the experimental results. In contrast to the ductile adhesive, the VCCT technique is revealed to be accurate in predicting the brittle adhesive.

13.
Materials (Basel) ; 17(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611973

RESUMO

Porous asphalt pavements are widely used in rainy and wet areas for their skid resistance, noise reduction, runoff minimization and environmental sustainability. Long-term moisture vapor erosion and the destabilization of large pore structures can easily result in pavement problems such as fragmentation, spalling, cracking, and excessive permanent deformation. To this end, four different preventive maintenance materials, including the rejuvenation (RJ), cohesion reinforcement (CEM), polymerization reaction, and emulsified asphalt (EA) types, were selected in this paper to improve the high-viscosity porous asphalt pavement. The effects of the different preventive maintenance materials on the temperature sensitivity, rheological properties and fatigue performance of high-viscosity modified asphalt were evaluated through temperature sweep, frequency sweep, multi-stress creep recovery (MSCR), linear amplitude sweep (LAS), and bending beam rheometer (BBR) tests. The results showed that the four preventive maintenance materials exhibit different enhancement mechanisms and effects. RJ improves the fatigue properties, deformation resistance and low-temperature cracking resistance of aged asphalt by adding elastomeric components; CEM materials are more conducive to increasing the low-temperature crack resistance of aged asphalt; while GL1 and EA improve the viscoelastic behavior of aged asphalt, but the effect of the dosing ratio needs to be considered.

14.
Materials (Basel) ; 17(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612002

RESUMO

Solving the challenges facing the mining industry is crucial for shaping the global attitude towards clean energy technologies associated with critical minerals extracted from depth. One of these challenges is the well-known explosion-like fractures (rockbursts) or spalling failures associated with the initiation of internal cracks. To prevent such catastrophic failure, shotcrete, as a cement grout, is widely used in tunnel support applications. In areas where the tunnels are constructed within the limestone strata using tunnel boring machines (TBM), drilling, and/or blasting, millions of cubic meters of crushed limestone (CL) in powder form are extracted and landfilled as waste. Given the fact that natural sand consumption as a raw material in the construction industry exceeds previous records, recycling of such excavation material is now becoming increasingly needed. From this perspective, this study aims to utilize crushed limestone as a potentially sustainable alternative to natural sand in shotcrete applications in deep tunnels. Accordingly, several strength characterization and crack initiation determinations through various stress-strain-based models were carried out on cylindrical samples containing different proportions of crushed limestone. By increasing the crushed limestone content in the shotcrete mix, the crack initiation stress (as a measure of the in situ spalling strength) increased as well. The results suggest that the crushed limestone has good potential to replace the natural sand in the shotcrete mixture used in tunnel support applications.

15.
Materials (Basel) ; 17(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612083

RESUMO

In this paper, ordinary Portland cement, ultrafine cement, polyurethane, and epoxy resin were selected as typical grouting materials. Grouting simulation tests were first conducted to prepare the grouted concrete crack sample. The effect of concrete crack parameters (i.e., crack aperture and roughness), grout water-cement ratio, and grouting pressure on the water-plugging performance of different grouting materials was explored through the impermeability test. The microstructure of grouted concrete cracks was analyzed by means of scanning electron microscopy (SEM) and computed tomography (CT), and the difference in water-plugging performance of different grouting materials was explained at the micro level. The results show that the impermeability of the four grouting materials was ranked as follows: Epoxy resin > polyurethane > ultra-fine cement > ordinary Portland cement. The concrete cracks grouted by epoxy resin have the highest plugging failure water pressure and the lowest permeability, which is the optimal grouting material. The effectiveness of crack grouting in water-plugging was directly proportional to the grouting pressure, provided the pressure did not exceed a certain value. When the pressure surpassed the threshold, the increase in pressure did not have a significant impact on the water plugging performance. For the two cement-based materials, the threshold pressure was 1 MPa, while for the other two chemical grouts, it was 2 MPa. The two cement-based grouts with a water-cement ratio of 0.8 showed optimal water-plugging performance. The water-plugging performance of ordinary Portland cement paste, ultra-fine cement pastes, and polyurethane grout was negatively correlated with crack aperture and positively correlated with crack roughness. However, the water-plugging performance of epoxy resin grout was not affected by crack aperture or roughness.

16.
Materials (Basel) ; 17(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612221

RESUMO

This work explores the influence of a pre-engineered notch on the electromagnetic radiation (EMR) parameters in NiTi shape memory alloy (SMA) during tensile tests. The test data showed that the EMR signal fluctuated between oscillatory and exponential, signifying that the specimen's viscosity damping coefficient changes during strain hardening. The EMR parameters, maximum EMR amplitude, and average EMR energy release rate remained constant initially but rose sharply with the plastic zone radius with progressive loading. It was postulated that new Frank-Read sources permit dislocation multiplication and increase the number of edge dislocations participating in EMR emissions, leading to a rise in the value of EMR parameters. The study of the correlation between EMR emission parameters and the plastic zone radius before the crack tip is a vital crack growth monitoring tool. An analysis of the interrelationship of the EMR energy release rate at fracture with the elastic strain energy release rate would help develop an innovative approach to assess fracture toughness, a critical parameter for the design and safety of metals. The microstructural analysis of tensile fractures and the interrelation between deformation behaviours concerning the EMR parameters offers a novel and real-time approach to improve the extant understanding of the behaviour of metallic materials.

17.
Heliyon ; 10(8): e29423, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644892

RESUMO

In order to improve the accuracy of stress intensity factors (SIFs) calculated by traditional boundary element methods (BEM), the multi-domain wavelet boundary element method (WBEM) is proposed. Firstly, by adjusting the nodes of the B-spline wavelet element on the interval, crack-tip elements are constructed. Since B-spline wavelet on the interval (BSWI) has excellent compact support characteristics and is particularly suitable for describing solution domains with large gradient changes, the constructed crack-tip can reduce the numerical oscillation effect near the crack tip. Secondly, the crack-tip elements are implemented into WBEM. And the combination of WBEM and multi-domain technology can effectively handle interface cracks. Thirdly, the crack problem solving strategy based on multi-domain WBEM can directly evaluate the SIFs of cracks. Finally, several numerical examples involving homogeneous media and bi-material models are given to verify that the proposed method is simple and highly accurate.

18.
Food Res Int ; 184: 114264, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609240

RESUMO

Rice is an important staple food in the world. Drying is an important step in the post-harvest handling of rice and can influence rice qualities and thus play a key role in determining rice commercial and nutritional value. In rice processing, traditional drying methods may lead to longer drying times, greater energy consumption, and unintended quality losses. Thus, it is imperative to improve the physical, chemical, and milling properties of rice while preserving its nutritional value, flavor, and appearance as much as possible. Additionally, it is necessary to increase the efficiency with which heat energy is utilized during the thermal processing of freshly harvested paddy. Moreover, this review provides insights into the current application status of six different innovative drying technologies such as radio frequency (RF) drying, microwave (MW) drying, infrared (IR) drying, vacuum drying (VD), superheated steam (SHS) drying, fluidized bed (FB) drying along with their effect on the quality of rice such as color, flavor, crack ratio, microstructure and morphology, bioactive components and antioxidant activity as well asstarch content and glycemic index. Dielectric methods of drying due to volumetric heating results in enhanced drying rate, improved heating uniformity, reduced crack ratio, increased head rice yield and better maintain taste value of paddy grains. These novel emerging drying techniques increased the interactions between hydrated proteins and swollen starch granules, resulting in enhanced viscosity of rice flour and promoted starch gelatinization and enhanced antioxidant activity which is helpful to produce functional rice. Moreover, this review not only highlights the existing challenges posed by these innovative thermal technologies but also presents potential solutions. Additionally, the combination of these technologies to optimize operating conditions can further boost their effectiveness in enhancing the drying process. Nevertheless, future studies are essential to gain a deeper understanding of the mechanism of quality changes induced by emerging processing technologies. This knowledge will help expand the application of these techniques in the rice processing industry.


Assuntos
Oryza , Antioxidantes , Dessecação , Alimentos , Amido
19.
Nanomaterials (Basel) ; 14(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38607166

RESUMO

The availability of carbon nanotube (CNT)-based polymer composites allows the development of surface-attached self-sensing crack sensors for the structural health monitoring of reinforced concrete (RC) structures. These sensors are fabricated by integrating CNTs as conductive fillers into polymer matrices such as polyurethane (PU) and can be applied by coating on RC structures before the composite hardens. The principle of crack detection is based on the electrical change characteristics of the CNT-based polymer composites when subjected to a tensile load. In this study, the electrical conductivity and electro-mechanical/environmental characterization of smart skin fabricated with various CNT concentrations were investigated. This was performed to derive the tensile strain sensitivity of the smart skin according to different CNT contents and to verify their environmental impact. The optimal CNT concentration for the crack detection sensor was determined to be 5 wt% CNT. The smart skin was applied to an RC structure to validate its effectiveness as a crack detection sensor. It successfully detected and monitored crack formation and growth in the structure. During repeated cycles of crack width variations, the smart skin also demonstrated excellent reproducibility and electrical stability in response to the progressive occurrence of cracks, thereby reinforcing the reliability of the crack detection sensor. Overall, the presented results describe the crack detection characteristics of smart skin and demonstrate its potential as a structural health monitoring (SHM) sensor.

20.
Adv Mater ; : e2402278, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657958

RESUMO

Constructing soft robotics with safe human-machine interactions requires low-modulus, high-power-density artificial muscles that are sensitive to gentle stimuli. In addition, the ability to resist crack propagation during long-term actuation cycles is essential for a long service life. Herein, for the first time, we propose a material design to combine all these desirable attributes in a single artificial muscle platform. Our design involves the molecular engineering of a liquid crystalline network with crystallizable segments and an ethylene glycol flexible spacer. A high degree of crystallinity could be afforded by utilizing aza-Michael chemistry to produce a low covalent crosslinking density, resulting in crack-insensitivity with a high fracture energy of 33720 J m-2 and a high fatigue threshold of 2250 J m-2. Such crack-resistant artificial muscle with tissue-matched modulus of 0.7 MPa can generate a high power density of 450 W kg-1 at a low temperature of 40 °C. Notably, because of the presence of crystalline domains in the actuated state, no crack propagation was observed after 500 heating-cooling actuation cycles under a static load of 220 kPa. This study points to a pathway for the creation of artificial muscles merging seemingly disparate, but desirable properties, broadening their application potential in smart devices. This article is protected by copyright. All rights reserved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...